


Binary Symmetric Channel

@ Recall that a B(1, p) is a distribution over the sample space
{0, 1} such that B(1, p) outputs 1 with probability p

Definition (Binary Symmetric Channel)

For € € (0,1/2), an e-binary symmetric channel, represented as
e-BSC, is a noisy channel that takes as input a bit b and outputs a
bit b:= b+ B(1,¢).

@ Intuitively, the channel flips each input bit independently with
probability £

e If an n-bit string c is passed through the channel, then the
output string is expected to have ne errors

@ By concentration inequalities, if an n-bit string ¢ is passed
through the channel, then the output string has at most
(¢ + 6)n errors with probability < exp(—262n/e).
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Original Motivation for Error-correcting Codes

@ Intuitively: Our goal is to “reliably transmit” messages over
e-BSC with minimum “per-bit overhead”
e Formalization:
o A sender wants to reliably send a message m € {0, l}k to a
receiver
o The sender encodes m into a codeword ¢ € {0,1}" and sends
c over the e-BSC
o The receiver obtains the erroneous string ¢, finds the closest
codeword ¢’ to ¢, and outputs the message m’ corresponding
to ¢
o We want P [m = m’] >1—27*" while minimizing n/k
@ Intuitively, the overhead of reliably transmitting a k-bit
messages is (n — k) bits. So, we the “per-bit overhead” is
(n— k)/k. Or, equivalently, we minimize n/k

Shannon’s Coding Theorem



(A very special form of) Shannon's Coding Theorem

Definition (Rate of a Code)
An [n, k]2 code has rate k/n.

@ For every channel, there exists a number called its capacity
C € (0,1) that measures the reliability of the channel
@ For e-BSC, we have C =1 — hy(¢)

Theorem (Shannon's Theorem)

For every channel and threshold T, there exists a code with rate

R > C — 7 that reliably transmits over this channel, where C is the
capacity of the channel. Such a code is referred to as capacity
achieving.

@ The capacity achieving code for a channel need not be linear

@ The capacity achieving code for e-BSC happens to be linear

@ In general, the best rate of linear codes to reliably transmit
over a channel can be significantly smaller than its capacity
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What we will prove

We will show the following.

@ For all £, we can construct a random binary linear code (with
probability 1 —27") that has rate R =1 — ha(¢) — 7 and
reliably transmits messages over e-BSC correctly with
probability 1 — 2727

You have already proven this in your homework problem! We will
provide an alternate proof.
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Randomized Construction

For an e-BSC, we choose the following parameters.
o Let § be such that 1 — exp(—262n/e) = 1 — 277"
o letd=2(c+0)n+1

@ 7 is a parameter that is chosen based on d and « that will be
explained later

@ We choose k/n=R=1— hy(e) —

Randomized Construction.

@ Generate a random P € {0,1}
code generated by G = [TkkaP]

kx(n=k) matrix and output the

Shannon's Coding Theorem



Proof

Note that the code is always an [n, k]2 code with rate
R=1- hg(E) — T

Note that the channel introduces at most (& + d)n errors with
probability > 1 — 272"

Conditioned on the introduction of at most (& + &)n errors by
the channel, we can always correctly recover the transmitted
message with probability 1, if the distance of the code is
d>2(e+d)n+1

So, all that remains to argue is the following. The code
generated by G has distance > 2(¢ + d)n + 1 with probability
1 _ 2—0[”
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Proof

Let C be the code generated by the matrix G

Let H= |—PT||l,_kxn_k| be the generator matrix of the dual
code of C

Suppose there exists a weight w codeword in C. Suppose the
codeword is ¢ and it has 1 only at positions i1 < ip <:+- < .

This implies that the sum of the columns {i,...,i,} of H is
the 0-column

The probability of these w columns adding up to the 0-column
is < 27(n=k)
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Proof [

@ The probability that some < w columns of H add up to
0-column is at most (by union bound)

w

S <”> 2~ (1K) — \oly(w, n)2~(1=K) < pha(w/mn  5=(n=K)
]
i=0

@ The probability that some < (¢ 4 ¢)n columns of H add up to

0-column is
< 2—( 1—R—h2(8+(5) )n

@ Recall, we have set R =1 — ha(e) — 7 and 7 is a parameter we
need to choose

@ Suppose we choose 7 such that

2—( 1—-R—hz(e+6) )n L 2an

then we will done

Shannon's Coding Theorem



Proof

So, we choose 7 such that

1—R—h2(€+5)20¢
—  me)+T7—hm(E+0) >

—

T2

+ (hg(& 1 o) hg(e))
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